Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Prog Biophys Mol Biol ; 178: 32-49, 2023 03.
Article in English | MEDLINE | ID: covidwho-2239057

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging virus that has caused the recent coronavirus disease (COVID-19) global pandemic. The current approved COVID-19 vaccines have shown considerable efficiency against hospitalization and death. However, the continuation of the pandemic for more than two years and the likelihood of new strain emergence despite the global rollout of vaccination highlight the immediate need for the development and improvement of vaccines. mRNA, viral vector, and inactivated virus vaccine platforms were the first members of the worldwide approved vaccine list. Subunit vaccines. which are vaccines based on synthetic peptides or recombinant proteins, have been used in lower numbers and limited countries. The unavoidable advantages of this platform, including safety and precise immune targeting, make it a promising vaccine with wider global use in the near future. This review article summarizes the current knowledge on different vaccine platforms, focusing on the subunit vaccines and their clinical trial advancements against COVID-19.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2 , Vaccines, Subunit , Knowledge
2.
Iran J Basic Med Sci ; 25(6): 762-766, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1934866

ABSTRACT

Objectives: Early, specific, and sensitive detection methods of COVID-19 are essential for force stopping its worldwide infection. Although CT images of the lung and/or viral RNA extraction followed by real-time reverse-transcriptase-polymerase chain reaction (rRT-PCR) are widely used; they have some limitations. Here, we developed a highly sensitive magnetic bead-based viral RNA extraction assay followed by rRT-PCR. Materials and Methods: Case group included oropharyngeal/nasopharyngeal and blood samples from 30 patients diagnosed positive by PCR test for COVID-19 and control group included 30 same samples from COVID-19 negative PCR test individuals. RNA was extracted, using viral RNA extraction kit as well as using our hand-made capture bead-based technique. A one-step cDNA synthesis and Real Time PCR was conducted. A two-step comparison of the different viral RNA extraction methods for oropharyngeal/nasopharyngeal and blood samples was performed. Student t-test was applied with a P<0.05 considered statistically significant. Results: In the case group, all 30 mucosal samples extracted either with viral RNA extraction kit or with beads-based assay were COVID-19 positive although in the latter category, Cqs were much lower. Although 43% of plasma samples extracted by bead-based method were found to be positive but no plasma samples extracted with column-based kit were detected positive by Real Time PCR. Conclusion: Bead-based RNA extraction method can reduce RNA loss by its single-tube performance and enhance the test sensitivity. It is also more sensitive to lower viral loads as shown in the detection of blood samples and the lower Cqs of mucosal samples.

3.
Comput Biol Med ; 147: 105735, 2022 08.
Article in English | MEDLINE | ID: covidwho-1906919

ABSTRACT

Since the new variant of SARS-CoV-2, Omicron (BA.1) has raised serious concerns, it is important to investigate the effects of mutations in the NTD and RBD domains of the spike protein for the development of COVID-19 vaccines. In this study, computational analysis of the Wuhan and Omicron NTDs and RBDs in their unbound and bound states to mAb 4A8 and ACE2 were performed. In addition, the interaction of NTD with antibody and RBD with ACE2 were evaluated in the presence of long glycans. The results show that long glycans at the surface of NTDs can reduce the accessibility of protein epitopes, thereby reducing binding efficiency and neutralizing potency of specific antibodies. Also, our findings indicate that the existence of the long glycans result in increased stability and enhanced affinity of the RBD to ACE2 in the Wuhan and Omicron variant. Key residues that play an important role in increasing the structural stability of the protein were identified using RIN analysis and in the state of interaction with mAb 4A8 and ACE2 through per-residue decomposition analysis. Further, the results of the free energy binding calculation using MM/GBSA method show that the Omicron variant has a higher infectivity than the Wuhan. This study provides a better understanding of the structural changes in the spike protein and can be useful for the development of novel therapeutics.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , COVID-19 Vaccines , Humans , Mutation , Peptidyl-Dipeptidase A/chemistry , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL